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1. The Staircase Structurc

A stairc~ise structured Un .~~~. p r c~,rJ! s o~ the

Find x1 > 0 , mm z such th ~t

A 1x 1 = b
1 

( 1. 1:

B~~~i
x
~~~i 

A~~x , b
~ 

t = 2 . . . ., T ( l . t )

C
1

X
1 

+ C X . + . ..  ~~~~~~ ~~~~~~~

where A is m by n , B is rn b~ is rn by one . c is
t t t t t +j . t_ t

one b y n~~, and x~ is n~ b y o n e .  The staircnsc linear ~r~~~r/;~ -.s rc~’fe-

sented in detached coeffici er~ form in Tablc. 1.

The first m
1 

rows (equations~ will he called ‘~er~ od 1 rows

(eq uations), the next m~ rows (equations) thu period ~ i ows ‘ eqi~ ition~~).

etc. Similarly, the first n
1 column s (v.~riables j ~ i l1 b~ c a l l e d  t h c

period 1 columns (variab l es), ccc .
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2. Representation of the Basis Inverse

Cons ider any basis of the program (l.l)-(1.T÷1). Clearly any such

basis  must also be staircase w ith

~~ 
.� ~~~ • = 1,.. .,T

f or if no t the f i r st m
1 + • • .  + m~ rows would be dependent . Of course

equality holds in (2) for t = T. Let

a~ = 

t=l 

- in
1 

( 3 )

Then the staircase structure basis may be further broken down to the  form

in Table 2.

Theorem 2.1. Through a suitable rearrangement of the basis , B, columns,

B may be put in the form of Table 2 such tha t  the submatrix consisting

of the f i r s t m . rows of col umns of B is nonsing ular , t = 1 ,.. .,T -

Proof: Clearly the first m
1 + m2 

+ ... + m
~~i 

columns in this restric-

tion of B are independen t for  if not B is singular . Similarly any

basis for the f i r s t in
1 

+ ... + m~ rows of B must consist of + .. + m~

columns . Consequen tly there is a subse t of the col umns of th e f i r s t

+ ... + n~~~ rows of B consisting of the first n
1 + ... + n

t l  
column s

and m
~ 

- at_ i of the next m~ columns that are independent . Hence the

theorem is proven as one may rearrange the first n
1 

col umns for  t = 1,

the nex t n~ col umns for t 2 , e tc .

:5 
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We will assume throughout that the column s of B arc rearranged

so as to satisfy the conditions of Theorem ~ .l . Then in Theorem 2 .~ it

will be shown that through a series of elementary operations B may be

placed in the form of Table 3.

Theorem 2.2. The staircase structure basis may be reduced to the form

disp layed in Table 3 wi th

V — A 1 fl
I - 11

= K 1b 1 
( L ~.lb )

= Kt[A t2] 
(14 .tc)

Kt = [B t_ 1 2 - EO I Bt_ i  11 
~~~~~~~~~ 2 j A ~~i ] ,

1 t > 1  (~~.ta)

= K~~[b~ - E O I B t 1  ~] ~~~~~ t > 1  (i; .t b )

where in (‘ .tb-c), 0 is a column of a
~~2 

zero vectors and a
0 

= 0.

Proof: By Theorem 2.1, K
1 

= A
1~ 

is well defined and multiplying by K1

y ields the desired form fo r  the f i r s t  m1 equations . Suppose the theorem

holds for  equations m1, m2, ... , ~~~~~ and the basis B is placed in

the form of Table 3 for  these equations . Subt rac t ing  [ Oj B k l  11 times

the k-i  period rows from the  k period rows y ields [B k l  2 
- [O

~
Bk l  11

A
k l  2 k l

A
k2~~:k 

2~ bk 
- [ O l B k_ 1 1~~k~ l . By Theorem 2.1 the f i r s t

columns of the above coefficients must be independent and

Kk 
= [B k_ I  ,.

~ 
- [Of Bk_ l l~

A k_ l 2JA kI I
1 exists and clearl y the theo rem

holds  for  t = 1, . .  . , k . The theorem then  fo l lows f rom induc t ion .

~~~~ 
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From this, X
l~~~~~

X
T 

may be found as follows

~l 2~~ r l = b T~~~~~ 
(5.T)

EXT 2  2 xT l  1’ = bT~ l 
- AT_I 2 ~~-l 2 

= b + i (5.Tl )

~~12 x21 ] = 

~2 
- 
~22~22 

= (5.2)

[xiii = b 1 
- A

12~12 
= b~ ( 5 . 1 )

Note that in this form a period t variable may be basic for

period t or for period t+l only.

~ the Substitute Inverse

Suppose a new variable is to enter the basis. Let t be the period

of the entering variable and k the period of the exiting variable. Then

there are three cases to consider: k = t , k > t, or k < t . Call x~~.

the entering variable and x • the exiting variable.
ki

Case 1. k = t .  There are two subcases to consider:  the  exiting variable

is basic for period t or the exiting variable is basic for period

t+l . In either si tuation, none of a 1,.. ., aT_ l  wil l  change according

to ( 3 ) .  Also K
1
,...,K

~~ 1 
will not change. Two methods for upda ting

wil l  be presented .

Pivoting Method. To form the new K
t 

if the exiting variable is

basic for period t , one simp ly multiplies the period t c o e f f i c i e nt

7
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vector of x tj  by the current  K
~~, 

append i t  to Kt and p ivot on the

element in that column belonging to the row for which the exiting variable

is basic. Then K
3 

for s t+l,.. .,T are found recursively as follows .

Compute the new A
1 2 = K

~ 1
A 5_1 2 

Consider the following matr ix

K
cI
IK~~~ EB 3 1  2 -[O!B5 1  1

]A~~~ 21A 51
] = K d

lK
old

[B 
~ 2 l~5 ~

1 ( 6 )

Clearly the last rn-a columns form the last m -a columns of the
s s—l s s—I

ident i ty  matr ix . Hence the new K 5 is obtained from the old one by

appending to it the matrix K~~~B5_ 1 2’ 
pivoting on the first a

5 1  
rows

of the appended columns, and then dropping them.

For the situation where the exiting variable is basic for period

t÷l, Kt 
will remain unchanged . However, A

~2 
and B

~2 
will change

with column x
~~
. replacing column x~~ = x~ 1. Then Kt + i, . . .,K~ 

are

obtained as in the previous situation with the new K
~+j 

being obtained

from the old one by a single pivot and the new K obtained from the old

by a
1 pivots for s=t+2,.. .,T.

Dyad Matrix Method. If B is an m by in non-singular matrix,

C is an in by 1 column vector, and R a 1 by in row vector , then

[B+CR)
1 

= [B
1
+kCR] (7.1)

*
This approach was suggested to the author by George B. Dantzig.

8
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where

= B~~ C (7.~~)

(7.~ )

—1

-l • (7.I~)
I +RB C

The reader may verify the above by multiplying B 4-CR by the righ t hand

side of (7.1). The matrix CR , which is the product of a column and a

row vector, is called a dyad matrix . Hence if one adds a dyad matr ix

to B, the inverse of the resulting matrix is obtained by adding a dyad

matrix to B

From (7) it follows recursively that if R . and C . are col umn

vectors then

[B 
+ 

~~~~~ 

C.R
iJ 

= 
[B

1 
± 

~~~ 

k. 
~~ 

(8.1)

where

Ci 
= B .’C . (E’ .2)

R. = R~B .
1

— l
k. = (8. L)
~ i+R . B .

1
C .

B~
1 

= 
[B

.
1 

+ ~~~ k. Ci 
i �2. (8 . 5)

j_ 1

Hence if one adds n dyad matrices to B , one adds n dyad ma tri ces to

p. 5

s. .  . . s~~~~~~ ~ __. ... __~~. s_ 5.5..~-~ 5 . S _  . 5_S.. ._5~ ~.
_5 _

~
5 S _S 
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its inverse. Note that it follows from induction in the above that each

of the R . is the prod uct of a row vector and B 1 . Note also that this

representation is not unique and in fact in (8) depends on the ordering

of the dyad matrices.

Performing a pivot operation is equivalent to adding a dyad matrix .

Spec if i c a l ly ,  R is the p ivot row and C is such tha t its ~
th componen t

is the multiple of R to be added to row i. Also rej’lacing column

by P . in a ma trix is equivalen t to adding a dyad matrix with C = P~~
_ P

~

and R is the unit vector with a one in position j.

Theorem 3.1. Suppose K~
ew 

= K~~
’
~ ÷E C RK

01d where C~ ana~ R
1 

are

column and row vectors respectively . If B
~ i, 

A82, B~2, 
and A

+ii 
are

unchanged then Knew 
= K0

~~ +S’ C! R ! K0~~ where C ’ and R’ are column
s+l s+l ~~.i i i s+l i i

and row vec tors respec tively. 
1

Proof: It follows from (l~.tc) that ~~~~ = A
old +~~~ c. R .K 0

~~A ands2 s2 ~~~~i i s  s2

consequently from (~4.ta) that fK~~~ ]
1 

= EK:~~I ’ ±
~~~~~ ~~~ 

where

R. -~ R. K
0h

~ A and C . = -[OIB ]C.. The theorem follows from (8).
1 1. s s2 1 sl i.

Theorem 3.2. Suppose K~
ew 

= K ’ + CRK°5~~, and [OIB ~~
W
] = [OjB~~

d ] + C ’R

where K ’  = K
ld 

÷
~~ 

c. R. K~~
d ;c , C . and C ’ are column vectors , R

i

are row vectors an~~
1
R is a unit row vector. Suppose also B and A

s2 s-i-li

are unchanged . Then K
new 

= K
old 

+ ~~~. 
~~~. K0

~~ where the  C. are
s-i- I. s-i- I i i. s-i- i 1

i_ l
column vectors and the R . are row vectors.

10 
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Proof: F’rom (~~.ta) and (~ ~~~ ~~~
. 

~~~~~~~ t h a t  -

= [ -N1 .\ 01 where  ~-! [ [ O 1 B °
~~

’ ) C t R ] 1 K I 45CRK 0
~~~ - tO !B~~~1K~~~

or M . : [ [ O Bold ! C ’ R~~l K ’ — K °
~~~1 -i L C [ O~ B 0 ] C ÷ c R C 1RK 0

~~~.

Thus M and consequently -MA C . is t ! i €  sum oi d yad ma t r i ces . The

theorem fo l l ows  f rom r epe at  ~ ‘l app l i ca t ion  ot  ? . 1)  and (7.~ ).

Now consider what  happens when t h e  en tering and exi ting bas is

variables are both  f rom period t . If they are  bas ic  fo r  period t-+ 1

then  K 1 , . . .~~
K t are  unchanged and K~~

’7 is obtained from K 1
~ by

a sing le pivot operation which is equivalent to adding a dyad matrix.

From Theorem 3.1 it fo l lows  that  K~~
W is obtained f rom K O

~~ b y

adding a single dyad matr ix  whose rows are l inear comb inat ion s of t he

rows of K0
~~ for $ > t+l.

If the entering and exiting variable are basic for period t ,

then K1,.. .,K~~ i are unchanged and K is upda ted by add ing a sing le

dyad mUltrix whose rows are linear combinations of the rows of K~~~ for

s > t. For s t+1 , this follows from Theorem 3.2 and for s > t+l

this  fol lows from Theorem 3.1.

Case 2. k > t . For this case , each of a
~~
,...,ak l  

inctcase by one

while all other a~ remain unchanged according to 3). Suppose X
1(~~

is basic for period k. Let x
~ j 

b e basic for period t-I- l. Then a

variable x~~ 1 J ’t+l ) 
currently basic for period t+1 must become

basic for period t+2 instead , and continue in this manner until

f in a l l y a va r iab le  x
k l  j’k-l) 

basic for period k-I becomes basic

fo r  period k replac ing  the  ex i t i ng  var iab le  ~~~~ If  Xk j  is basic

Ii

— - -

- - - . 5 —  .- -. .5-—----
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for period k-i-i the rep lacement process continues for one more period .

For this case K1,... ,Kt are unchanged .

Pivoting Method. For K
t 1  

consider (6) for s = t+1 and where

Bt~-
, is appended by one column whose coefficients are generated by the

coefficients of the entering variable x
e .. . Pivot on any nonzero element

of col umn 
~~~ 

in a pos it ion at~i-l 
or higher . (There must be at least

one such element or Theorem 2.1 is contradicted.) Let £ be the pivot row .

Then the 1th column of the old period t+l basis (which must be a column

of A
~~ 1 ~~ 

is deleted from the period t+l basis ..n~ introduced in the

period t-i-2 basis. The process continues for Kt + 2 , . . ., K.K
. Thus for

K
~
, t+2 < 5 < k-l , A 5_ 1 2 

is appended by the column deleted from A
1 l~

Then K is obtained ~y pivoting on the first a
1 ~ 

1 rows of the in

by a
1 + 1 (i.e., a3_ 1 is increased by one) matrix K

Ol
~ B I 2 The

variable deleted from the period s basis is the one which has a one in

the same position as that of the column introduced in the period s basis.

That variable is then introduced into the period s+l basis. For s = k

the procedure is the same except the variable leaving the period k basis

mus t be xk. and it of course is not introduced into any other basis.

For s = k-+-1,...,T the computation of K
8 

is identical to that of Case 1.

If is basic for period k-i-i, it leaves the period k-i-i basis instead

of the period k basis and the procedure is the same except for minor

changes in the sequence of values for s

Dyad Mat r ix  Method. Here , in many cases the A , B , and A
s2 s2 s+1l

will not always remain the same . However , as will be seen later on, when

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ _ _ , .  . _ _



this happens , only one column oi the 11it r i x  
~~~ e 

~
‘
~s+11

1 changes. ‘th is

can occur by replacing a column of B , (and consequentl y a column

of A ) by another colunin in B . , d Leting a column i rom F~ ands~
5 - s~: s.

adding a col umn to A~~ 11, etc. Such an operation will be called an

elementary column rep lacement .

Theorem~~ ..~~ Suppose KflCW 
= K:ld ~~~~~~~~~~~~ where C~ and R

i 
are

- 
~~, ,  new old ifl old

column and row vectors respectively. Ih en K = K + C!R!K
s÷l s-i- i 1 1 s+l

new mew1-”1-
(and possib ly a permutation of the columns) if [B

~
,.. A 11 is obtained

from [B
O
~~A

O
~~ I by an elementary column replacement and where C ,’

and R! are column and row vectors respec tively.

new . . . - oldProof: Case 1: A is obtained by a single column rep lacement in A
s-t- l s-i-i

-old . -new .From Theorem 3.1, rep lacing A 0 with A 0 is equivalent to adding £

old -l - . old new
• dyad matrices to [K

5 1 ] in (6). Rep lacing A 11 with A
1 

is a

sing le column rep lacement adding another dyad matrix to [K
Ol
~~]

I 
to

obtain [K°~~ ]
1 

and the theorem follows for this case. Case 2: A column

old . newof B . (and consequent ly A ,~) is replaced . Replacing K
5 

with K

- . . old -l
in (l~.~ c) and (~ ) again adds j? dyad matrices to [K

1
] . Then rep lacing

old old - new newand B . with A and B is equivalent to a simp le column

r:placement thus adding :nother dyad matrix to obtain [K~~~ ]
1
. The

theorem follows for this case. Case 3: A column of B
~2 

Cand A
2) 

is

dropped and an add itional column is appended to A
5~ 11 . 

This is eouiva-

lent to replacing the out, ~{ng column of B
2 

with the incoming column

of A and the outgoing column of A . with a column of zeros. Hence
s411 s~

13
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this case follows from case 2. Case ~ : An additional column of B
S5

(and A
2) 

is appended and a column of A
11 

is dropped . Delete the

outgoing column of A
5+ii 

and append it to B
5

, and app end a col umn

of zeros to A . This reduces case )~ to case 2 and the theorem is
s2

proven .

Suppose X
k 

is basic for period k. K1,. ..,K~ 
are unchanged .

Kt+i 
is upda ted b y a sing le pivot opera tion hence add ing a single dyad

matrix . Assume K
1 

is updated by adding 2 dyad matrices . For

S = t+2,...,k-l a variable basic for period s-I becomes basic for

period s and a variable basic for period s becomes basic for period

s+l thereby shifting a column from B5_ 11 (and A
5 1 1 ) 

to B3_12

(and A ) and also shifting a column of B (and A ) to B
s—l2 si si s2

(and A
2
). For updating K one may update the inverse by first

adding a column to B 12 (and A 8_12 ) and deleting a column from

and then deleting a column of B 11 and rep lacing it with zeros in

[0!B5_11 J . By Theorems 3.2 and 3.3 K
~
’ and K would be updated by

adding 1+1 dyad matrices. Note that for Theorem 3. to app ly the

dyad matrix corresponding to the del etion of a col umn of A 5_ 11 in

KS
1
1 

must be acted upon first (i.e., correspond t c~ ~~1 in (8)). For

s=k the same result holds except that the column of A
k 

and B
k

dropped is that of the exiting variable and hence is not shif ted to the

k-i-i period basis. For period k+l , the column of B
kl 

correspond ing

to the exiting variable is dropped whil e B~~~, B k+ll 
and Ak 1 1  are 

— - 5_-~~~~~- -- - .5- - . 5 .~~
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unchanged , resulUng in one additional dyad mairi x to be added . Hence

for  s t-~ ,...,k K5 is updated by adding s-t dyad matrices and for

s > kf I, K is updated by add ing k 1 - t dyad matrices . The result

for s — k+ follows from Theorem 3 .1.

If x~ is basic for period 1(41, the rep lacemen t goes on for an

addit iona l period but the formulas remain the same .

Case .~~~ k - r  t . For t}-iis case a
k 

at_ l each decrease by one accord-

ing to ( 3 ) .  Suppose X
ki 

is basic for period k ‘ k-i-i). Since Xk.

leaves the period k (k-i-l) basis , a period k ‘k11) variabl e in the period

k+l (k-i-? ) basis must leave that basis and enter the period k (k-i-l) basis.

The process continues until finally x
~~. enters  the  period t b a s i s .

Pivoting Method. Suppose x
k~ 

is basic for period k. Then

are unchanged . The choic-’ for the period k variable to

enter the period k basis may be any variable such that K.R 
times its

period k column coeff icients yields a nonzero element in the ~th posi-

tion . For s = k÷l t-l . K is computed as follows . Form (6) and

perform a sequence of pivots on the m
5 

by a
5 1

-l matrix B 1,. to

obtain K - Then K f B jA ] will be the identity matrix with one
s s s-l 2 s i

column missing . A ppend A
1 

with the coefficients of any perioo s

variable , x
2 

currently basic for period s+l such that K
5 

times its

period s column coefficients yield a nonzero element in the row for

wh ich K has all zeros , and pivot on that element in K times its
5 - 5

column coefficients. Now x~~ is in the period s ba sis and has left

th e period s-i- i basis. For period . simp ly let the  period t coeffic ients

I 
S

-S

~

-- _ _  _
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of x~~. rep lace the coeff icients ol the period t variable which has

left the period t basis and p ivot on Lh e  rn
1 

b y aT l  matrix

K~~
d
B~~ l ,, to obtain t h e  new K

~ - he procedure for finding Kt+i, -

is then identical to that of (.~sc I .

If X
k, 

is basic for period k-f l instead of period k the pro-

cedure is the same except that K
k 

is uncha nged and leaves the

period k+l basis.

Dyad Matrix Method. Suppose x.
k . is basic for period k. Then

a col umn of A k. and B
k? 

is shifted to A
kl and Bkl to rep lace the

column coefficients of xv .. A sing le pivot , or the add ition of a single

dyad matrix then upda tes K.K
. For s = k-t i ,. - .,t-l an additional column

is added to B and a column is added to A and B and
s—li s÷il s+1I

deleted from A and B - . Hence as in case 2, if K is
s+12 s+k s-i

upda ted by add ing £ dyad matrices , K5 
is updated by adding 1+1 dyad

matrices by Theorems 3.2 and 3.-
~
. The same is true for s=t except that

the col umn add ed to A and B is x . and hence no column istl tl ti

delet ed from and B
~ 

- Hence K1. . ..,Kk l  are unchanged . K is

updated by adding s-k~ l dyad matrices for s= k ,....t and by adding

t-k-i-2 dyad matrices for s t-i-1. The latter follows inductivel y f rom

Theorem ‘3 for s t-+ l and Theorem ‘-‘ .1 for s 
~~~ 

t~~ -

If xk. is basic for period k+l , K 1 k
k 

are unchanged . An

argument  s i m i l a r  to the above shows that K~ is up dated by adding s-k

dyad matrices for s. k-i- 1 ,.. .,t and by adding t-k+ l dyad matrices for

s� t -fl .

I’’



~,. Finding the Multip liers

In Theorem 1~.1 it will be shown that the simp lex multi p liers may

he found by the following recursive reLationships:

= CT_ i 2 
CT (9_fl

= 

~~-i ~ 
- 
~t÷i [0IB ti 1K t, t <T (9.t)

where

C11 = C11K1 (10.1)

~t~ l 2 c~ 1 = [Ct_i 2 L C t_2 2 ~t~ l i
]A

t i  2IC tIKt, t > 1 (l0.t)

with CT1 = C
T 

and c
02 

being vacuous .

Theorem I~.l. The simplex multipliers are given by (9).

Proof: From Table 2, 7r1
A 11 + rr2B11 = C11 

and thus from (~~.1a)

= - 
~2

B11
1(1. Hence the theorem holds for t = 1. Suppose the

theorem holds for t = k. For t = k-i-i one has (i) 
~k

A
k2 + 

~k+1
Bk2 = C~~

and (ii) 71k l
A
k I I + 

~k+2 
B
k l  1. 

= Ck l  1~ 
using the convention for

k-i-i = T that 
~T+l 

= 0, BT1 = ~oj and CT1 = C
T
. By the inductive

assumption and (l~kc), ‘1rk
A
~~ 

= 

~~k-1 2 
Ckl~~ k2 

- •7T~÷1
[0jB~ 1 1A~2 

and (i)

may be replaced with (iii) 7ik+l
[B
~~ 

- [0
~
Bkl IA

~~~I 
= C~~ - [Ck l  2 

CkI
]A
k2

.

Combining (ii) and (iii) yields -Trk l [B k2 - [0IB kl 1~~2LA k+l ~
- 

~~k-l 2 
Ckl IA k2!Ck+1 ) - 

~ k+2 F O B k+l ~~~ 
By (l4ka), mul tiplying

1~ 

- --5— -~~ - — —5 — -—-.5.- ,



both sides on the right by K~ç 1  and noting that ~~~ is vacuous y ie lds

(~~~t) for t k-i-I. The theorem f o l l ow s  f r o m  induction .

On ce the simp lex multi p liers ~re known , one can find the new variable

to enter the basis.

5. Finding the Exiting Variable

As in the previous section let x~~ be the entering variable.

Then let A
~~

. and B
t . 

be its origina l nonzero coefficients as given in

Table 1 and its period k coefficients in the reduced form of

Table 3. From (1~) it follows that

a
k 

= 0, k < t

~~~~~

— (II)
a
~~ i 

= K
~~ i

[B t . — [OjB t1 ]~~~]

= 
~
K
k[OlB k l  lJak l  ~ k> T

Lett ing all nonbasic variables other than x~~. be zero it follows from

(5) and (11) that

Xk l  2 Xkl = - a~~ x~~~~ ( l 2 .ka )

where

aT aT (l2 .Tb )

= a
k 

- [A k2 10] 
~ 

for k T (l 2.kb)

- • ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —.~~~~.. ~~~ :~~~~;



Hence the pivot row must satisfy

ki . ki -
= mm (1:)

-- - a ’
km a ’. >0 ki

ki

where b~~. and a~~. represent the i~
’
~ compon en ts of and

respect ively -

~- . Concluding Remarks and Examp le

The developmen t of special purpo se al gori thms to take advantage of

stairca se structures in linear progr ams has previously been dealt with

by Dantzig [2], Ho and Manne 1~ ], Ho [7], and Glassey [5].

Dantzig [21 uses a substitute basis as opposed to a substitute

inverse for solving the more general stai rcase problem in which nonzero

elements  may appear anywhere below the diagona l .

In the decomposition of Ho and Manne [~1 it was repor ted tha t

computer storage requirements were greatl y reduced when compared to the

simplex method but computation times were significantly increased .

However , Ho [7] has subs equently incorporated new techniques which

reduced computation times below that of the simp lex method .

Storage requirements of the method of this report should be

competitive with the [~ ]. 
Computationally more frequent but faster

matrix reinversions would be required using this method than with the

simp lex method .

If pivo ting is used , then comp utationa l efficiency depends largely

on the column dimensions of the a
1 

in Table 3. The simp lex method using

product form of the inverse requires multi pli cat ion by an m by m matrix

-j
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~~~~~~~~

which is the identity except for one column in order to up date. For the

substitute inverse , no updatiri i-~ occurs for periods earlier than the

periods of both the entering and exiting variabLes. To update K one

multiplies by an m
5 
by in

~ 
matrix which is identical to the identity

matrix except for one column if s is the first period to be upda ted

and multip lies by a
5 1  

such matrices otherwise . Hence efficiency

depend s to a large exten t on the a
1
. Previous experience on problems

of this type indicate that the a . are usually quite small .

If the dyad matrix method is used , computational efficiency

depends largely on the absolute difference between the periods of the

entering and exi t ing var iab le .  In par ticu lar if the entering and

exit ing variable are of the same period , the K which are updated

are done so by adding one dyad matrix . Otherwise one upda tes by adding

anywhere from one to the absolute difference be tween the periods of the

entering and exiting variables . The addition of a dyad matrix is abou t

the equivalent of a sing le pivot in terms of computation time .

Note that with either method one would want to reinvert more often

in the higher numbered p eriods than in the lower numbered ones . If all

periods had the same n umber of equations , one could reinver t the K
5

matrices approximately T times as often as in the simp lex method and

still be competitive. It should also be noted that the number of dyad

matrices to be added to the K
t 

cannot exceed T at any iteration

and that this can occur only in period T and even then Only if the

pair of variables entering and leaving the basis are from periods I

and T. Hence if one were to reinvert after a fixed number , say k , of



I- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — --.5- _ _ _ _ _ _ _

ch-ad aatrix additions to any K one would reinvert fewer than T

times as often as one would by reinverting after k iterations of the

simp lex method . Of course , using this criteria , some of the K
1 (in

particular K
1) 

would be up dated fewer than every k iterations and

others (in particular K.1,) would be updated more often than every k

iterations .

The relevant parameters discussed above were gathered from a

standard simp lex method run of the 9 per iod PILOT energy model and

the res ults are summarized in Table ~~~~ The val ues of the a~ are
i

large enough to indicate that the pivoting method would not be effi-

cient except for period 9 and of course the firs t per iod to be updated .

However , the dyad matrix method of up dating appears to be extremely

efficient. Noting tha t period 9 has much fewer constraints than

periods 1 through 8, the dyad matrix update method should be compe-

t i t ive  with the simp lex method if no more than 8 dyad matrices are

added per period per iteration . Table 4 shows that the last period ,

which is the one requiring the larges t number of dyad matrix addi-

tions , requires but 3.218 per iteration . The average number of dyad

matrix additions per iteration for all periods is 1.778.
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Number of Dyad 
*Number of Matrix Additions

Period Ave rage  Average  per
Number (i) Constraints Variable a~ Total Iteration

1 1Q~; 3)45 26 17 .157

2 lC7 3)46 ‘2,7 53 .~87

3 10 ,’ 3)46 29 106 .895

107 ~)46 31 165 1.331

5 107 3)46 28 229 1.8)47

6 107 3)4 6 29 28)4 2 .290

7 107 3)46 26 339 2.73)4

8 12)4 363 2 380 3.065

9 146 146 -- 399 3.218

TABLE )4: Statistics for the PILOT energy model run of 12)4 iterations

*
These numbers are based on the assumption that the entering

and exi ting variables are bas ic to the period for which they belong

( except for the en tering variable in Case 2 of Sect ion 3). The fact

that this would not always be the case means actua l numbers would be

lower than those in the last two columns of Table 14 .
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A1 x1 
d1

Bt l  x~~1 
+ = d~ ; (t = 2, . ..,  T)

Letting m~ be the number of constraints in period i, the substitute inverse

consists of the inverse of T matriceS which are m1 
X 
~~~ 1. = 1, ..., T as

opposed to the actual inverse which is in x m , in = E m~. Hence the substitute

inverse would require significantly less storage than the actual inverse.

Two methods are presented for updating the substitute inverse, both of

which consist of updating some, but not necessarily all of the T smaller

inverses. The first, a pivoting method, requires append ing one or more

columns to the smaller inverses and pivoting on the appended columns. The

second requires adding one to T dyad matrices to the smaller inverses.

Computational efficiency of both methods can be tested to a large degree

using standard linear programming codes.
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